Course Outline

Title: DATA ANALYSIS AND NUMERICAL TECHNIQUES

Code: ENCOR4040

Faculty / Portfolio: Faculty of Science and Technology

Level:	Advanced	
Pre-requisites:	Nil	
Co-requisites:	Nil	
Exclusions:	Nil	
Credit Points:	15	

ASCED Code: 039999

Objectives:

After successfully completing this course, students should be able to:

Knowledge:

- **K1.** Describe how data are acquired and processed;
- K2. Understand the fundamentals of statistical analysis and probability;
- **K3.** Learn the basics of regression models and simulation.
- K4. Relate experimental findings to the analytical model and system variables.
- **K5.** Observe how experiments are used for system optimisation and improvement;
- **K6.** Appreciate the importance of inference and statistical analysis to engineering;
- **K7.** Acquire an understanding of system of linear algebraic equations and different techniques to solve matrices;
- K8. Develop an understanding of numerical modelling in engineering applications;
- **K9.** Appreciate solution algorithm for non-linear algebraic equations;
- **K10.** Learn how to perform numerical solution of partial differential equations.
- **K11.** Understand computer based solution techniques to solve partial differential equations encountered in engineering applications.

Skills:

- **S1.** Apply existing and developing knowledge and experience to experimental designs;
- **S2.** Demonstrate the ability to use computers to solve engineering problems;
- **S3.** Solve real engineering problems through experimental and numerical techniques;
- S4. Improve system performance using statistical analysis and simulation;
- S5. Work effectively, both independently and in teams;
- S6. Formulate and implement algorithm for solution of non-linear algebraic equations;
- **S7.** Implement tri-diagonal matrix solution algorithm;
- **S8.** Demonstrate the ability to develop user-friendly computer applications to solve partial differential equations applied in engineering discipline.

Course Outline

ENCOR4040 DATA ANALYSIS AND NUMERICAL TECHNIQUES

Values:

- V1. Recognise how the design of experiment is utilised in engineering applications;
- **V2.** Develop an understanding of system variables and their impact on the overall behaviour of engineering systems;
- **V3.** Appreciate the importance of understanding how integrated engineering systems behave, through modelling, simulation and testing;
- **V4.** Appreciate that an understanding of numerical modelling is essential in many engineering discipline
- V5. Appreciate learning as a lifelong process.

Content:

Topics may include:

- Data from simulated and computer-based models
- Statistics and probability
- Modelling and regression
- Parametric design of experiment (DoE)
- Process and empirical-based optimisation
- Non-linear algebraic equations;
- Matrix solution techniques: TDMA;
- Initial value problems; boundary value problems;
- Solution of partial differential equations by finite difference method.

Assessment:

Assessment Task	Assessment Type	Weighting
Statistical analysis	Assignment	20-30%
Optimisation and DoE	Assignment	20-30%
Approximation & matrix methods	Assignment	20-30%
Partial differential equation	Assignment	20-30%

Adopted Reference Style:

APA

Presentation of Academic Work: